Ch.7 Isomorphisms

Return to TOC

Functions

function (or map or transformation) f:DCf:D\rightarrow C associates input argumentsxDx\in D to output valuesf(x)Cf(x)\in C

Example 7.1

The function f:Z{0,1,2}f:\mathbb{Z}\rightarrow\{0,1,2\} defined by f(x)f(x) is the remainder when xx is divided by 33 is surjective

Example 7.2

The function f:RRf:\mathbb{R}\rightarrow\mathbb{R} defined by f(x)=2xf(x)=2x is bijective

Example 7.3

The function g:RRg:\mathbb{R}\rightarrow\mathbb{R} defined by g(x)=xg(x)=\sqrt{x} is a right inverse of f(x)=x2f(x)=x^2 because (fg)(x)=(x)2=x(f\circ g)(x)=(\sqrt{x})^2=x but is not a left inverse because (gf)(x)=x2=x(g\circ f)(x)=\sqrt{x^2}=x only when x0x\ge 0, not all xRx\in\mathbb{R}


Isomorphisms

The association (ab)a+bx\begin{pmatrix}a\\b\end{pmatrix}\leftrightarrow a+bxpreserves the structure of the spaces

An isomorphism (written VWV\cong W) is a map f:VWf:V\to W that

  1. is bijective
  2. preserves structure, i.e. if v1,v2V\vec{v}_1,\vec{v}_2\in V then
    f(v1+v2)=f(v1)+f(v2)f(\vec{v}_1+\vec{v}_2)=f(\vec{v}_1)+f(\vec{v}_2)
    and if vV\vec{v}\in V and rRr\in \mathbb{R} then
    f(rv)=rf(v)f(r\cdot\vec{v})=r\cdot f(\vec{v})

Same correspondence exists even after vector addition or scalar multiplication

Proving Isomorphism

  1. Prove injectivity, i.e. for v1,v2V\vec{v}_1,\vec{v}_2\in V, prove f(v1)=f(v2)v1=v2f(\vec{v}_1)=f(\vec{v}_2)\implies \vec{v}_1=\vec{v}_2
  2. Prove surjectivity, i.e. for wW\vec{w}\in W prove vV\exist\vec{v}\in V s.t. f(v)=wf(\vec{v})=\vec{w}
  3. Prove it preserves addition, i.e. for v1,v2V\vec{v}_1,\vec{v}_2\in V, prove f(v1+v2)=f(v1)+f(v2)f(\vec{v}_1+\vec{v}_2)=f(\vec{v}_1)+f(\vec{v}_2)
  4. Prove is preserves scalar multiplication, i.e. for vV\vec{v}\in V and rRr\in\mathbb{R}, f(rv)=rf(v)f(r\cdot\vec{v})=r\cdot f(\vec{v})

First two prove bijectivity, last two proves structure-preserving

Example 7.4

Prove P2R3\mathcal{P}_2\cong \mathbb{R}^3 under the map
f(a0+a1x+a2x2)=(a0a1a2)f(a_0+a_1x+a_2x^2)=\begin{pmatrix}a_0\\a_1\\a_2\end{pmatrix}


Condition 1:
f(a0+a1x+a2x2)=f(b0+b1x+b2x2)f(a_0+a_1x+a_2x^2)=f(b_0+b_1x+b_2x^2)
(a0a1a2)=(b0b1b2)\implies\begin{pmatrix}a_0\\a_1\\a_2\end{pmatrix}=\begin{pmatrix}b_0\\b_1\\b_2\end{pmatrix}
a0=b0, a1=b1, a2=b2\implies a_0=b_0,\space a_1=b_1,\space a_2=b_2
a0+a1x+a2x2=b0+b1x+b2x2\rightarrow a_0+a_1x+a_2x^2=b_0+b_1x+b_2x^2
Condition 2:
For any w=(a0a1a2)R3\vec{w}=\begin{pmatrix}a_0\\a_1\\a_2\end{pmatrix}\in\mathbb{R}^3, the corresponding element of the domain is a0+a1x+a2x2a_0+a_1x+a_2x^2 which is part of the domain
Condition 3:
f((a0+a1x+a2x2)+(b0+b1x+b2x2))=f((a0+b0)+(a1+b1)x+(a2+b2)x2)=(a0+b0a1+b1a2+b2)=(a0a1a2)+(b0b1b2)=f(a0+a1x+a2x2)+f(b0+b1x+b2x2)f((a_0+a_1x+a_2x^2)+(b_0+b_1x+b_2x^2))\\ =f((a_0+b_0)+(a_1+b_1)x+(a_2+b_2)x^2)\\ =\begin{pmatrix}a_0+b_0\\a_1+b_1\\a_2+b_2\end{pmatrix}\\ =\begin{pmatrix}a_0\\a_1\\a_2\end{pmatrix}+\begin{pmatrix}b_0\\b_1\\b_2\end{pmatrix}\\ =f(a_0+a_1x+a_2x^2)+f(b_0+b_1x+b_2x^2)
Condition 4:
f(r(a0+a1x+a2x2))=f(ra0+ra1x+ra2x2)=(ra0ra1ra2)=r(a0a1a2)=rf(a0+a1x+a2x2)f(r\cdot(a_0+a_1x+a_2x^2))=f(ra_0+ra_1x+ra_2x^2)\\ =\begin{pmatrix}ra_0\\ra_1\\ra_2\end{pmatrix}\\ =r\begin{pmatrix}a_0\\a_1\\a_2\end{pmatrix}\\ =rf(a_0+a_1x+a_2x^2)
Thus all four conditions are proved and ff is an isomorphism. Therfore, R2R3\mathcal{R}_2\cong\mathbb{R}^3

Example 7.5

The function f:R2R2f:\mathbb{R}^2\to\mathbb{R}^2
f((xy))=(x2y2)f(\begin{pmatrix}x\\y\end{pmatrix})=\begin{pmatrix}x^2\\y^2\end{pmatrix}
does not preserve addition since
f((10)+(20))=(90)f((10))+f((20))f(\begin{pmatrix}1\\0\end{pmatrix}+\begin{pmatrix}2\\0\end{pmatrix})=\begin{pmatrix}9\\0\end{pmatrix}\ne f(\begin{pmatrix}1\\0\end{pmatrix})+f(\begin{pmatrix}2\\0\end{pmatrix})

An automorphism maps a space to itself

Examples 7.6

ds:R2R2, multiply by nonzero scalar sd_s:\mathbb{R}^2\to\mathbb{R}^2, \text{ multiply by nonzero scalar } s
Maps space of R2\mathbb{R}^2 to itself, but is a dilation

tθ:R2R2, rotate by θt_\theta:\mathbb{R}^2\to\mathbb{R}^2, \text{ rotate by }\theta
Maps space of R2\mathbb{R}^2 to itself, but rotates the vector

fl:R2R2, reflect over line lf_l:\mathbb{R}^2\to\mathbb{R}^2, \text{ reflect over line } l
Maps space of R2\mathbb{R}^2 to itself, but flips the vector over a line

An isomorphism maps the zero vector to the zero vector

Proof

Consider an isomorphism f:VWf:V\to W with vV\vec{v}\in V
f(0V)=f(0v)=0f(v)=0wf(\vec{0}_V)=f(0\cdot\vec{v})=0\cdot f(\vec{v})=\vec{0}_w

For any map f:VWf:V\to W between vector spaces, these statements are equivalent:

  1. ff preserves structure
    f(v1+v2)=f(v1)+f(v2) and f(cv)=cf(v)f(\vec{v}_1+\vec{v}_2)=f(\vec{v}_1)+f(\vec{v}_2)\text{ and }f(c\vec{v})=c f(\vec{v})
  2. ff preserves linear combinations of a finite number of vectors
    f(c1v1++cnvn)=c1f(v1)++cnf(vn)f(c_1\vec{v}_1+\cdots+c_n\vec{v}_n)=c_1f(\vec{v}_1)+\cdots+c_nf(\vec{v}_n)

The inverse of a isomorphism is also an isomorphism.

Both are intuitive, though a proof would be required
Proof for equivalency uses induction
Proof for inverse one involves evaluating the conditions

Isomorphism is an equivalence relation

Proof Outline

Reflexivity: space is isomorphic to itself by the identity map
Symmetry: the inverse of an isomorphism is also an isomorphism
Transitivity: evaluate the isomorphism conditions

Vector spaces are isomorphic iff they have the same dimension

Proof

First prove isomorphic \implies same dimension
We prove that if f:VWf:V\to W is an isomorphism and the basis for VV is B=β1,...,βnB=\langle\vec{\beta}_1,...,\vec{\beta}_n\rangle then its image D=f(β1),...,f(βn)D=\langle f(\vec{\beta}_1),...,f(\vec{\beta}_n)\rangle is the basis of the codomain WW. The reverse is equivalent by simply taking f1f^{-1} instead.
Fix any wW\vec{w}\in W. Since ff is onto there must exist a vV\vec{v}\in V s.t. f(v)=wf(\vec{v})=\vec{w}. Express f(v)f(\vec{v}) as f(v1β1++vnβn)=v1f(β1)++vnf(βn)f(v_1\vec{\beta}_1+\cdots+v_n\vec{\beta}_n)=v_1f(\vec{\beta}_1)+\cdots+v_nf(\vec{\beta}_n) so DD spans WW.
For linear independence,
0W=c1f(β1)++cnf(βn)=f(c1β1++cnβn)\vec{0}_W=c_1f(\vec{\beta}_1)+\cdots+c_nf(\vec{\beta}_n)=f(c_1\vec{\beta}_1+\cdots+c_n\vec{\beta}_n)
Since ff is one-to-one, only f(0V)=0Wf(\vec{0}_V)=\vec{0}_W, and since BB is linearly independent, all cic_i's must be 0.

Next, prove same dimension \implies isomorphic.
We prove that all nn-dimensional spaces are isomorphic to Rn\mathbb{R}^n. Then by transitivity, the statement will be proven.
The map
v=v1β1++vnβnRepB(v1vn)\vec{v}=v_1\vec{\beta}_1+\cdots+v_n\vec{\beta}_n\xmapsto{\text{Rep}_B}\begin{pmatrix}v_1\\\vdots\\v_n\end{pmatrix}
This function is one-to-one because if
RepB(u1β1++unβn)=RepB(v1β1++vnβn)\text{Rep}_B(u_1\vec{\beta}_1+\cdots+u_n\vec{\beta}_n)=\text{Rep}_B(v_1\vec{\beta}_1+\cdots+v_n\vec{\beta}_n)
then
(u1un)=(v1vn)\begin{pmatrix}u_1\\\vdots\\u_n\end{pmatrix}=\begin{pmatrix}v_1\\\vdots\\v_n\end{pmatrix}
which implies ui=viu_i=v_i for i=1,...,ni=1,...,n, implying u1β1++unβn=v1β1++vnβu_1\vec{\beta}_1+\cdots+u_n\vec{\beta}_n=v_1\vec{\beta}_1+\cdots+v_n\vec{\beta}
The function is onto because every
w=(w1wn)\vec{w}=\begin{pmatrix}w_1\\\vdots\\w_n\end{pmatrix}
is an image of vV\vec{v}\in V, namely w=RepB(w1β1++wnβn)\vec{w}=\text{Rep}_B(w_1\vec{\beta}_1+\cdots+w_n\vec{\beta}_n)
The function preserves structure because
RepB(ru+sv)=RepB((ru1+sv1)β1++(run+svn)βn)=(ru1+sv1run+svn)=r(u1un)+s(v1vn)=rRepB(u)+sRepB(v)\begin{array}{rcl} \text{Rep}_B(r\cdot\vec{u}+s\cdot\vec{v})& =&\text{Rep}_B((ru_1+sv_1)\vec{\beta}_1+\cdots+(ru_n+sv_n)\vec{\beta}_n)\\ &=&\begin{pmatrix}ru_1+sv_1\\\vdots\\ru_n+sv_n\end{pmatrix}\\ &=&r\begin{pmatrix}u_1\\\vdots\\u_n\end{pmatrix}+s\begin{pmatrix}v_1\\\vdots\\v_n\end{pmatrix}\\ &=&r\cdot\text{Rep}_B(\vec{u})+s\cdot\text{Rep}_B(\vec{v}) \end{array}
So RepB\text{Rep}_B is an isomorphism, so any nn-dimensional space is isomorphic to Rn\mathbb{R}^n

Conclusion: